Universidad Católica del Norte, Economic Department

Spatial Econometrics: Final Exam

Professor: Mauricio Sarrias

December 6, 2016

- If you believe a question is unclear, please state how you interpret the question.
- Please, use formal mathematical language wherever possible.
- Please assume whatever you need to assume for the sake of your arguments.
- You must show all work for partial credit to be awarded.
- Total points: 45.

1 QUESTIONS

Consider the following spatial DGP:

$$\mathbf{y}_n = \rho_0 \mathbf{W}_n \mathbf{y}_n + \mathbf{X}_n \boldsymbol{\beta}_0 + \mathbf{u}_n$$

$$\mathbf{u}_n = \lambda_0 \mathbf{M}_n \mathbf{u}_n + \boldsymbol{\varepsilon}_n$$
 (1)

- 1. (SLM Model) Assume that $\lambda_0 = 0$, $\mathbb{E}(u_{i,n}) = 0$ and $\mathbb{E}(u_{i,n}^2) = \sigma^2$, which is finite.
 - a) (5 pts) If we would like to estimate the parameters using S2SLS, and assuming that \mathbf{X}_n are exogenous, what would be the optimal instruments? What is the intuition behind those instruments?
 - b) (5 pts) What are the advantages of disadvantages of estimating S2SLS estimator compare with the ML estimator?
- 2. (SAC Model) Now assume that $\mathbb{E}(\epsilon_{i,n}) = 0$ and $\mathbb{E}(\epsilon_{i,n}^2) = \sigma^2$.
 - a) (10 pts) Explain in detail the procedure to obtain the estimator of λ_0 .

- b) (5 pts) Explain the procedure to obtain the FGS2SLS estimator.
- c) (20 pts) Derive the asymptotic distribution of the FGS2SLS estimator.

The following theorem can be useful:

CLT for triangular arrays with homokedastic errors: Let $\{v_{i,n}, 1 \le i \le n, n \ge 1\}$ be a triangular array of identically distributed random variables. Assume that the random variables $\{v_{i,n}, 1 \le i \le n\}$ are jointly independently distributed for each n with $\mathbb{E}(v_{i,n}) = 0$ and $\mathbb{E}(v_{i,n}^2) = \sigma^2 < \infty$. Let $\{a_{ij,n}, 1 \le i \le n, n \ge 1\}, j = 1, ..., k$ be triangular arrays of real numbers that are bounded in absolute value. Further let

$$\mathbf{v}_n = \begin{pmatrix} v_{1,n} \\ \vdots \\ v_{n,n} \end{pmatrix}, \quad \mathbf{A}_n = \begin{pmatrix} a_{11,n} & \dots & a_{1k,n} \\ \vdots & & \vdots \\ a_{n1,n} & \dots & a_{nk,n} \end{pmatrix}$$

Assume that $\lim_{n\to\infty} n^{-1} \mathbf{A}_n^{\top} \mathbf{A}_n = \mathbf{Q}_{AA}$ is finite and nonsingular matrix. Then

$$\frac{1}{\sqrt{n}} \mathbf{A}_n^\top \mathbf{v}_n \xrightarrow{d} \mathbf{N}(\mathbf{0}, \sigma^2 \mathbf{Q}_{AA})$$